Sampling in Dirichlet Process Mixture Models
for Clustering Streaming Data

Or Dinari
Ben-Gurion University

Abstract

Practical tools for clustering streaming data
must be fast enough to handle the arrival
rate of the observations. Typically, they also
must adapt on the fly to possible lack of
stationarity; i.e., the data statistics may be
time-dependent due to various forms of drifts,
changes in the number of clusters, etc. The
Dirichlet Process Mixture Model (DPMM),
whose Bayesian nonparametric nature allows
it to adapt its complexity to the data, seems a
natural choice for the streaming-data case. In
its classical formulation, however, the DPMM
cannot capture common types of drifts in
the data statistics. Moreover, and regard-
less of that limitation, existing methods for
online DPMM inference are too slow to han-
dle rapid data streams. In this work we pro-
pose adapting both the DPMM and a known
DPMM sampling-based non-streaming infer-
ence method for streaming-data clustering.
We demonstrate the utility of the proposed
method on several challenging settings, where
it obtains state-of-the-art results while being
on par with other methods in terms of speed.

1 INTRODUCTION

In today’s Age of Data, the need for data-analysis meth-
ods that are both fast and effective is more important
than ever. In this context, this work focuses on the chal-
lenging problem of streaming-data clustering; namely,
the unsupervised-learning task at hand is to cluster
observations where the latter arrive constantly at some
rate, forming an ever-growing, possibly infinite, data
stream. In this prevalent setting, traditional clustering

Proceedings of the 25'" International Conference on Artifi-
cial Intelligence and Statistics (AISTATS) 2022, Valencia,
Spain. PMLR: Volume 151. Copyright 2022 by the au-
thor(s).

Oren Freifeld
Ben-Gurion University

methods are mostly inapplicable due to the following
reasons. 1) Storing the entire stream in memory is often
impractical or even impossible. 2) Even when storing
the entire stream is possible, users usually cannot wait
until the stream ends; rather, they often need, at any
given moment, a reliable estimate of the model based
on the data seen so far, and keep updating that esti-
mate as more data arrives. 3) The statistical properties
of the data might be non-stationary (Ramirez-Gallego
et al., 2017) as, e.g., clusters may appear or disappear,
the distribution underlying a specific cluster may be
time-dependent due to various forms of drift, etc. Thus,
as new observations arrive, we must be able to update
the model and adapt it to the newer data without
having to revisit previously-seen observations.

Here we propose a new streaming-data clustering
method based on the Dirichlet Process Mixture Model
(DPMM) and, in particular, a specific non-streaming
DPMM sampler (Chang and Fisher III, 2013). The
DPMM (Ferguson, 1973; Antoniak, 1974) is a classical
Bayesian Nonparametric (BNP) model (Hjort et al.,
2010) which is often used in clustering problems where
K, the number of clusters, is unknown (Miiller et al.,
2015). The DPMM'’s flexibility and adaptiveness to the
data complexity support the inference of K (which is
also the number of instantiated mixture components)
together with the rest of the model. When clustering
streaming data, the ability to modify K is an impor-
tant property, sought after by most methods in this
field. As the DPMM possesses that property, to some
extent it can be used as is for streaming-data clus-
tering. However, one problem that arises is that the
DPMM cannot “forget” previously-seen observations,
even those from the distant past. This is a limitation
even with DPMM methods that do no need to keep
all the data in memory (such as the Stochastic Online

Acknowledgements. This work was supported by
the Lynn and William Frankel Center at BGU CS, by the
Israeli Council for Higher Education via the BGU Data
Science Research Center, and by Israel Science Foundation
Personal Grant #360/21. O.D. was also funded by the
Jabotinsky Scholarship from Israel’s Ministry of Technology
and Science, and by BGU’s Hi-Tech Scholarship.

Sampling in Dirichlet Process Mixture Models for Clustering Streaming Data

Variational Bayes (SoVB) (Hoffman et al., 2013) or the
Memoized Variational Bayes (Hughes and Sudderth,
2013)); e.g., when the number of observations grows
larger and larger, new points have almost no effect on
the estimated model. Another problem caused by the
lack of forgetting is the inability to handle incremental
concept drifts (Ramirez-Gallego et al., 2017): when the
components change over time, a DPMM method will
often opt to instantiate a new component, instead of
modifying existing ones. Lastly, as DPMM inference
(at least in most formulations) requires multiple passes
over the data, it cannot scale (in terms of speed and
memory) to long data streams and is inapplicable in
the case of infinitely-long streams.

To adapt the DPMM for streaming data, we utilize
an idea widely used in streaming-data clustering, the
Damped Window (Zubaroglu and Atalay, 2021) (i.e.,
using finitely-many time-decaying weights). When ap-
plying this idea in the calculation of the DPMM'’s
posterior distribution, we are able to not only better
adapt to new data (thereby accommodating various
concept drifts) but also obviate the need to reiterate
over previously-processed observations. Concretely, we
incorporate the Damped Window within a fast and
recent implementation (Dinari et al., 2019) of Chang
and Fisher’s DPMM sampler (Chang and Fisher III,
2013) and eliminate the need to revisit, during infer-
ence, previously-seen data batches. Consequently, the
sampler’s speed improves to the point that it becomes
on par with other streaming-data clustering methods.
Additionally, we also introduce a deterministic subrou-
tine (mostly based on predictive posterior distributions)
that, when added to the sampler, significantly improves
the performance in the streaming-data clustering task.
A thorough experimental study (§ 5), shows that com-
pared with several key methods, our method almost
uniformly dominates in several common metrics.

To summarize, our two main contributions are: 1)
a novel and fast streaming-data clustering method,
called ScStream, that achieves state-of-the-art
(SOTA) results and that was obtained by adapting
a DPMM method to the streaming-data setting;
2) we created and/or adapted several datasets for
evaluating clustering methods for streaming data.

Finally, our Julia code and is available at github.

com/BGU-CS-VIL/DPMMSubClustersStreaming. j1
while its (optional) Python wrapper is available at
github.com/BGU-CS-VIL/dpmmpythonStreaming.

2 RELATED WORK

Streaming-data clustering: Most methods for
clustering streaming data use a two-phase process. The
first phase is online during which new data is obtained,

processed, and summarized. The second is offline,
is typically called only upon request, and generates
the clusters. An early example of such methods
is BIRCH (Zhang et al., 1996) which introduced
micro-clusters and macro-clusters. By maintaining a
clustering features (CF) tree structure, whose nodes
are called a micro-clusters, new points are assigned to
micro-clusters based on feature similarity. A new leaf
is created whenever the best similarity is insufficient.
In the offline step the micro-clusters are clustered into
so-called macro-clusters whose number is predefined.
The macro-clusters then serve as a predicting model
for labeling new data. CluStream (Aggarwal et al.,
2003) improves BIRCH by allowing the clustering
over different time horizons, storing not just the
point summary but also time-dependent snapshots
of the micro clusters. DenStream (Cao et al., 2006)
extends BIRCH via a time-decaying CF (reducing the
weight of older micro-clusters). BIRCH, together with
CluStream and DenStream, inspired other works (e.g.:
A-BIRCH (Lorbeer et al., 2017); ScaleKM (Bradley
et al., 1998); ACSC (Fahy et al., 2018); HCluS-
tream (Yang and Zhou, 2006); SDStream (Ren
and Ma, 2009); C-DenStream (Ruiz et al., 2009);
HDenStream (Lin and Lin, 2009); HCDD (Zgraja and
WozZniak, 2018); LeaDen-Stream (Amini and Wabh,
2013)) that utilize its key idea.

Another approach is to store cluster medoids (instead
of the CF). An example is StreamKM++ (Ackermann
et al., 2012), where a weighted subset (a coreset), of
the data is stored in a tree. BICO (Fichtenberger
et al., 2013) combines the StreamKM++ coreset
approach with BIRCH’s CF by storing the coresets
in a tree structure, where each node is a CF. As an
alternative for storing the medoids, some methods,
such as STREAM (O’Callaghan et al., 2002), only
store the clusters’ centers. In competitive-learning
stream algorithms, the centroids of the clusters
evolve over time. Examples for such methods are
SOStream (Isaksson et al., 2012), DBSTREAM (Hah-
sler et al., 2017), evoStream (Carnein and Trautmann,
2018) and G-Stream (Ghesmoune et al., 2014).

While the algorithms described so far represent
different approaches, what they all have in common
is that they are density-based. In another approach,
based on partitioning the space using a grid, the
macro-clusters are usually found by grouping together
adjacent grid cells. In D-Stream (Chen and Tu, 2007),
a fixed grid is used. ExCC (Bhatnagar and Kaur,
2007) lets the user set the grid boundaries and number
of cells. Stats-Grid (Park and Lee, 2004) recursively
splits the grid until the cells are sufficiently small.
Some methods (e.g., Amini et al. (2014)) combine the

github.com/BGU-CS-VIL/DPMMSubClustersStreaming.jl
github.com/BGU-CS-VIL/DPMMSubClustersStreaming.jl
github.com/BGU-CS-VIL/dpmmpythonStreaming

Or Dinari and Oren Freifeld

density- and grid-based approaches. For a thorough
study of the methods above and more, see a recent
review by Carnein and Trautmann (2019).

While most of the algorithms use the two-phase
approach, there are several ones which are fully online.
A prime example is Mini-Batch K-Means (Sculley,
2010), a very fast algorithm which, having adapted
the classical K-Means (Lloyd, 1982; MacQueen et al.,
1967) to a batched version, updates centroids using
a step in a gradient-based direction (as opposed
to a full recalculation as in K-Means). Adaptive
Streaming K-Means (Puschmann et al., 2016) is
another online approach that aims at handling concept
drifts. Another online algorithm is pcStream (Mirsky
et al., 2015) which uses Principal Component Analysis
(PCA) to capture contexts in the data.

Online DPMM: While DPMM seems a natu-
ral candidate model for streaming-data clustering
due to its innate ability of adapting its complexity
to the data, efficient and scalable DPMM inference
remains a great challenge. Moreover, its applicability
to streaming data is not trivial. There have been a
few works which adapted the DPMM to an online
setting. To the best of our knowledge, all of them rely
on variational inference. This is a key difference from
our sampling-based method. SoVB (Hoffman et al.,
2013) provides a framework which can be applied to
BNP models, the DPMM included. In that version the
data is processed in batches, and the model is updated
according to a chosen learning rate. While the process
in SoVB does not need to revisit previous batches, that
method makes the strong assumption that the statistics
are similar across the batches; our method does not
suffer from this limitation. MemoizedVB (Hughes
and Sudderth, 2013) is an online variational inference
method intended for large datasets where the entire
data does not fit in the memory. It processes the
data is processed in batches and store the sufficient
statistics of each cluster in each batch separately.
MemoizedVB, however, must revisit each batch
multiple times, so it is less relevant for streaming
data. MVCL (Yang et al., 2019) is a similar method
which extends MemoizedVB to continual learning
with multiple datasets. That method too, however, is
inapplicable in a stream setting as it requires revisiting
batches. Lin (2013) proposed a learning algorithm for
DPMM that requires only a single pass on the data
and thus, theoretically, can operate in a streaming
setting, at least on stationary data; however, it cannot
adapt to concept drifts. This is also a limitation
of the distributed method from (Campbell et al., 2015).

Campbell et al. (2013) propose a method that

uses the Dependent Dirichlet Process (MacEachern,
1999) (an extension of the Dirichlet Process that
supports evolving mixture models) for handling batch
sequential data of an unknown number of evolving clus-
ters. D-Means (Campbell et al., 2019) is a related BNP
clustering algorithm for evolving linearly-separable
spherical clusters based on small-variance asymptotic
analysis. Unlike those two works above which are
restricted to spherical Gaussian components, our
implementation supports full-covariance Gaussians as
well as multinomial components. More generally, our
method supports any exponential family. Moreover,
we are unaware of Dependent DPMM methods (let
alone implementations) that scale to streaming data.

Scalable DPMM Samplers: While all the
online DPMM methods above are variational, we
leverage a fast sampling-based DPMM method and
adapt it to streaming data. Concretely, Chang and
Fisher IIT (2013) proposed a DPMM sampler (for
non-streaming data), which, by using an augmented
space and parallel sampling, allows for fast inference
with convergence guarantees and that can perform
large moves, escaping many (though not all) poor local
maxima. A summary of their sampler is presented
in § 3. More recently, Dinari et al. (2019) proposed
a more efficient and even faster implementation of
Chang and Fisher’s sampler. Our work is largely based
on those two works, which we have adapted into a
streaming setting. Particularly, we are unaware of im-
plementations of either variational or sampling-based
DPMM inference that are (in the non-streaming case)
as fast as Dinari et al. (2019), let alone ones that
support full-covariance Gaussians and/or multinomials.
Thus, that is the implementation we chose to modify.
Importantly, while Dinari et al. (2019) is still not fast
enough for streaming data, our proposed algorithmic
and implementation changes eliminate this problem.

3 BACKGROUND

For simplicity, our presentation below assumes that all
the random vectors involved have either a probability
density function (pdf) or a probability mass function
(pmf). One known DPMM construction is as follows:

7|la ~ GEM(«), (1)
On|H “55 fo(H), Vke{1,2,...}, (2)
zilm " Cat(w), Vie{1,2,...,N}, (3)

xi|2i, 02, ~ fu(xi;02,),
Here i.i.d. stands for independent and identically dis-
tributed, H is the base measure, fy is the pdf or pmf as-
sociated with H, the infinite-length vector w = (7).,
is drawn from the Griffiths-Engen-McCloskey stick-

Vie{l,2,....,N}. (4)

Sampling in Dirichlet Process Mixture Models for Clustering Streaming Data

breaking process (GEM) (Pitman, 2002) with a concen-
tration parameter o > 0 (particularly, 7 > 0 for every
k and Y77, m = 1) while 6y, is drawn from fy. Each
of the N i.i.d. observations (x;), is generated by first
drawing a label, z; € Z™T, from 7 (i.e., Cat is the cate-
gorical distribution), and then x; is drawn from (a pdf
or a pmf) f, parameterized by 6,,. Loosely speaking,
the DPMM entertains the notion of a mixture model
of infinitely many components:

17kaw(mi;9k)- (5)

Each fg(+;0;) is called a component and we make no
distinction between a component, fz(-,0;), and its
parameter, 0. The so-called labels (2;)Y ; encode the
observation-to-component assignments. A cluster is a
collection of points sharing a label; i.e., @; is in cluster
k, denoted by Cj, if and only if z; = k. Let (the
random variable) K be the number of unique labels:
K =|{k:z,=kforsomeiec{l,...,N}}|; i.e., K is
also the number of clusters and is bounded above by
N. Typically, and as assumed in this paper, H is
chosen such that fy will be a conjugate prior (Gelman
et al., 2013) to fz. The latent variables here are K,
(0x)%2,, m, and (z;)_,. For more details (and other
constructions), see Sudderth (2006).

B.4.d. 0
xr; ~ 5

We now briefly review a DPMM sampler proposed
by Chang and Fisher IIT (2013). It consists of a re-
stricted Gibbs sampler (Robert and Casella, 2013) and
a split/merge framework which together form an er-
godic Markov chain. The operations in each step of that
sampler are highly parallelizable. Of note, the splits
and merges let the sampler make large moves along the
(posterior) probability surface as in such operations
multiple labels change their label together to the same
different label; this is in contrast to what happens, e.g.,
in methods that change each label separately from the
others. We now describe the essential details.

The augmented space. The latent variables,
(0x)52,, ™, and (z;)h_,, are augmented with auxil-
iary variables. For each component 6 two subcompo-
nents are added, §k71, 91@,2, with subcomponent weights
T = (Tk1,Tk2). Implicitly, this means that every
cluster Cy, is augmented with two subclusters, C’;ml and
ék_]g. For each cluster label z;, an additional subcluster
label, z; € {1,2}, is added; i.e., subcluster Cy 1 C Ck
consists of all the points in C whose subcluster label is
1 (Cy,2, is defined similarly). The goal of this auxiliary
two-component mixture is to facilitate useful cluster
splitting proposals (see below).

The restricted Gibbs sampler. This restricted sam-
pler is not allowed to change (the current estimate
of) K; rather, it can change only the parameters of
the existing clusters and subclusters, and when sam-
pling the labels, it can assign an observation only to

an existing cluster. Note that for each instantiated
component k, changing 6y, ék)l, and 9714,}2 is done us-
ing p(0k|Ck; H), p(O,1|Cr1; H), and p(Ok,2|Cr 2; H),
respectively, where the latter three are the conditional
distributions of the cluster or subcluster parameters
given the cluster or subclusters. For more details about
the restricted Gibbs sampler, see our appendix.

The split/merge framework. Splits and merges
allow the sampler to change K using the Metropolis-
Hastings framework (Hastings, 1970). Particularly, the
auxiliary variables are used to propose splitting an
existing cluster or merging two exiting ones. When
a split is accepted, each of the newly-born clusters is
augmented with two new subclusters. The Hastings
ratio of a split is (Chang and Fisher III, 2013)

ol (Ni1) fo(Cra; H)T (Ni2) fo (Cr,2; H)
[(Nk) fo(Cr; H)

Hsplit =

(6)
where I' is the Gamma function, Ny, N1 and Nj 2
are the number of points in Cj, Ck,1 and Cvk,g, respec-
tively, while fa:(Cka H)v fw(ék,l; H)7 and fw(ék,2; H)
represent the marginal likelihood of Cy, C_'kJ and C_'kg
respectively. Concrete expressions for the marginal
likelihood, in the case of Gaussian or Multinomial com-
ponents (the component types considered in our ex-
periments) appear in our appendix. Finally, a merge
proposal is based on taking two existing clusters and
proposing merging them into one. The corresponding
Hastings ratio is Hyerge = 1/Hgplit where C. 1 and Cj, o
are replaced with the two clusters, and C}, is replaced
with the result of the merge. For a derivation of these
ratios, see Chang and Fisher III (2013).

4 METHOD

Henceforth we will refer to the sampler from § 3 as
the DPMM sampler. We base our method on that
sampler but introduce important modifications of the
latter in order to: 1) make it compatible with streaming
data that arrives (possibly rapidly and/or indefinitely)
batch by batch; 2) improve the clustering and the label
consistency across batches.

4.1 Batches and Time-based Weighting

For each instantiated component k£ in the DPMM sam-
pler, finding p(6x|Ck; H) requires computing sufficient
statistics based on all of the points in C}, (similar logic
applies to (p(Ok,;|Crj; H))jeq1,23)- As the sufficient
statistics are based on summation, it is tempting to
try to use online updates by incrementally increasing
the sums whenever a new batch arrives. However, the
sufficient statistics often change with each iteration of
the DPMM sampler (due to label changes). Thus, the

Or Dinari and Oren Freifeld

Table 1: Comparing our method (ScStream) with BIRCH Zhang et al. (1996), CluStream Aggarwal et al. (2003),
D-Stream Chen and Tu (2007), DBSTREAM (Hahsler and Bolanos, 2016), StreamKM++ (Ackermann et al.,
2012), Mini Batch K-Means (Sculley, 2010), pcStream (Mirsky et al., 2015), SoVB (Hoffman et al., 2013). Also
included is DPMM sampler (Dinari et al., 2019). N/A indicates that a method did not scale enough or lacks
support for the data type.

BIRCH CluStream’ D-Stream DBSTREAM StreamKM-++1 Mm,l Bat;:h pcStream SoVB ScStream ‘ DPMM
K-Means (Ours) Sampler
ARI: 81+£.12 .86+ .11 88+£.16 .90=£.11 b3+.11 .82 £.09 60+.12 58+ .11 .93 +.08 |[.92£ .14
NMI: 89+ .04 .94+ .03 944+ .05 94+.04 71 +.05 .89 £.03 76 £.07 .75+£.05 .95+.03 || .94+.10
2D Gaussians Purity: .83+.06 .94 +.03 91+.09 91+£.06 57 +.05 .83 +.05 70£.08 .68 £.06 .92+ .05 91 +.10
F-Measure: .84 +.10 .88 +.09 90+.13 91+£.09 .61 + .08 .85+ .08 .66 +.10 .65+.09 .94+.07 || .93+ .11
Ful-lNML: N/A N/A N/A N/A N/A A84.00 .37 52 68+.01 ||N/A
ARI: .07+.08 .10+ .07 07+.11 .10+£.13 .09 £+ .09 .07+ .06 .03+£.02 .10£.09 .15+.11 ||.10£.11
NMI: 14+£.09 .19+.09 19+ .11 18+£.15 15+.08 13 £.06 20+ .07 13£.10 21 +.14 ||.16 £.12
CoverType Purity: .66 +.10 .71+ .11 70£.10 .68=£.11 68 +£.11 .66 £.12 79+.08 .66+.13 .71+.11 67+ .12
F-Measure: .44 £+ .10 .33 +.05 b8+ .14 .60+ .13 42+ .10 .37 £ .06 11+£.05 .48 £.08 .47+ .08 A48 £+ .09
FullNML N/A N/A N/A N/A N/A 06+.01 .08 01 13+.01 ||N/A
ARI: 21411 30+.13 N/A A3+£.15 B5+£.15 49 + .17 20£.09 31+£.18 63+.19 | .64+ .28
NMI: 35+ .11 .45+.09 N/A 22+ .17 .62+£.09 58 £ .12 33+.08 45+£.20 .69+.15 ||.72+ .24
ImageNet100 Purity: 64+ .12 75+ .12 N/A 43+ .13 .91 +.06 .87 +.09 66+£.10 49+.13 .78+ .14 74+ .22
F-Measure: .39+ .08 .44 + .10 N/A 43 +.09 62+ .14 b7+ .15 33+£.09 55+£.11 73+£.12 ||.76 £.17
Ful-NML N/A NJ/A N/A N/A N/A 57+.02 .26 23 48+ .01 ||N/A
ARL: N/A B0+.14 N/A 30+£.16 N/A 45+ .12 19+.07 .00+.02 .62+.17 ||[N/A
NMI: N/A 45+ .10 N/A 40+ .14 N/A 59 £.07 38+£.06 .00+.02 .68+.13 ||N/A
ImageNet1K Purity: N/A T4+ .14 N/A 62+ .13 N/A 97+.03 .76+.08 25+.04 .78 .13 N/A
F-Measure: N/A A4 + .09 N/A A48 £ .11 N/A bl+.12 28+.09 .38+.04 .72+.12 ||N/A
FullNML: N/A N/A N/A N/A N/A 63+£.01 .30 00 A1+.02 ||N/A
ARIL: N/A .00£.01 N/A .00 £ .00 34+.24 A1+ .24 N/A 21+ .14 .78+ .24 || .45+ .22
NMI: N/A A1+£.05 N/A .00 £ .00 .65+ .16 .69 £.16 N/A b52+.14 89+.12 |.62+.30
100D Multinomials Purity: N/A 09+.03 N/A .03 +.00 53 +.25 61+£.25 N/A 31+.15 .84+.20 |[.53+.25
F-Measure: N/A 04+£.01 N/A .04+ .01 35+.24 42+ .24 N/A 23+.13 .78+ .24 || .46+ .22
FullNML: N/A N/A N/A N/A N/A 54401 N/A 27 72+.01 |N/A
ARI: N/A .00 £+ .00 N/A N/A .01 +£.00 .01 £.00 N/A .06+.01 .13+£.01 ||.12+.01
NMI: N/A 12 +£.02 N/A N/A .07+.01 .09 +£.01 N/A 20£.02 .36 £.03 | .33£.02
20NewsGroup Purity: N/A 13 +£.02 N/A N/A 11+ .01 12+ .01 N/A 13+.01 .28+.02 || .24+ .02
F-Measure: N/A .10 £.00 N/A N/A .10 £ .00 .09 £.00 N/A 14+.01 20£.01 ||.19+£.01
FullNML: N/A N/A N/A N/A N/A 05+£.01 N/A a7 32+0.03||N/A

T Parametric methods given the true K.

online updates cannot be done without having all the
batches that arrived so far stored in memory — but
that becomes infeasible quickly as the stream grows.
More generally, once a batch is processed it cannot be
revisited again. Moreover, even if somehow, via an ex-
pensive and tedious bookkeeping, one could keep track
of the ever-changing sufficient statistics, this would usu-
ally be a bad idea: once enough batches arrive new ones
will hardly influence the sufficient statistics despite the
fact that they, in the common case of non-stationarity,
are more relevant than much older batches.

We address the no-revisits constraint and the non-
stationarity as follows. Let Xp = (x;);-%, be a data
batch at time B where np is the number of points
in it. For b € {1,...,B}, let n% be the number of
points in batch b assigned to cluster k, and let s% be
the sufficient statistics computed, for cluster k, based
solely on those nl,; points. Let hi‘B denote the history
record of sufficient statistics and counts for cluster
k: hiP = ((s2,n?)), . The subcluster history is
similarly defined; i.e., hi'? = ((s} ;, 7} ;))i., where
J € {1,2} and ~ indicates subcluster-related quantities.
Note that while per-batch sufficient statistics were also

used in Hughes and Sudderth (2013) their method is
inapplicable for streaming data as they must revisit
batches. We now define the time-weighted sufficient
statistics and count for cluster k:

B B
SE =), KBv)sp, NE=3" K(B,bmy (7)

where K(+,-) : R x R — R is a weighting function,
g=min {b:be{l,...,B},K(B,b) > €}, and e > 0 is
a user-defined threshold (we used ¢ = le — 08 in all
our experiments). The analogous subcluster quantities,
(i.e., 5’2,1,5‘272, N};’l, and N/gz) are defined similarly.
Note that, in the summations above, usually ¢ > 1.
This limits the space/memory/time complexity, and
implies we need to maintain the history records only
up to a fixed maximal length; i.e., for each batch B we
update these records such that we keep the information
from a previous batch b only if (B, b) > € and discard
it otherwise. As in many damped-window methods,
we use KC(B,b) = 27 B where A > 0 is user-defined
(that said, other kernels may also be used).

Example 1 Consider D-dimensional Gaussian com-
ponents where the Normal Inverse Wishart (NIW) dis-
tribution serves as the base measure. Let (k, m,v, ¥)

Sampling in Dirichlet Process Mixture Models for Clustering Streaming Data

denote the hyperparameters of the NIW prior. Let
Xy = (x1,...,%,,) denote the data points (in RP) in
batch b. Using a classical result (Gelman et al., 2013),
the sufficient statistics here are

b T)
s, = E x; 1, — g x;x; 1, — 8
k (Xy iz =k z€X, iy Lz, =k) ()

where the indicator function 1,,— is 1 if z; = k and
0 otherwise. Using conjugacy (Gelman et al., 2013)
as well as the replacement of the standard sufficient
statistics and counts with their weighted versions, the
hyperparameters of the NIW posterior for cluster k are:

KZ:H+NI?’ VZ:V+NI£33

mz = /:]”; (,‘{m —+ Z[,B, {K(B, b) ZwiEXb wi]lzik:|>)

* 1 B .
v (e) Km0 Y, | waltn])
(9)
(note that together, the two nested sums in these equa-

tions constitute SB). This fully defines the posterior
distribution over the parameters of Gaussian k.

See the appendix for an analogous example for the
case of multinomial components. More generally, out
method applies to components from any exponential
family when used with its conjugate prior. As we will
show in § 4.2, to determine z;, our method uses the
predictive posterior distribution, p(x;|H, SZ, N, z; =
k) (where we replaced the standard sufficient statistics
and number of points with their weighted versions) as
the latter induces, via proportionality, the predicted
probability of observation x; to belong to cluster k:

p(zi=k|x;, H, S8, NB)ocp(as|H, SP, NP, zi=k). (10)

Example 2 Continuing Example 1, in the Gaussian
case with an NIW prior, Eq. (10) becomes (Chang,
2014)

p(x;|H,SE NP 2;=k)

p(’zlzk‘w’mHv SE,N,CB)O(Wkp(iL'Z‘KZ7mZ7l/Z, ‘IIZJZZ:k)

kp+1
=ty My, ——— 11
vi—D+1 (wumka k(i — D+ 1)Vk k) (11)
where t(+) is Student’s t-distribution (see the appendix
for the multinomial case).

4.2 The Proposed Algorithm

Before diving into the proposed algorithm, which is
a novel extension of the DPMM sampler, let us con-
sider the underlying model behind it. In the stationary
case where all the data points are drawn from the
same DPMM, the algorithm almost coincides with the
DPMM sampler (especially if A is high). A more inter-

esting insight is the following. Hu et al. (2015) showed
how to incorporate prior knowledge into a DPMM.
When our method processes batch B, it can be viewed
as DPMM inference with such an incorporated prior
knowledge. Specifically, the prior knowledge consists
of the K instantiated clusters where the prior knowl-
edge of each 0 (k € {1,...,K}) is captured via the
posterior distribution over 6 implied by H and h,i:B -1

With this in mind, we proceed to describe the pro-
posed algorithm, summarized in Algorithm 1 (which
uses Algorithm 2 as its main subroutine). Let X =
(XB)Be{1,2,...} be a possibly-infinite data stream, where
each Xp is a batch of np data points. One of our pro-
posed modifications is that throughout the entire run of
the algorithm, instead of using the standard sufficient
statistics and point number, we use Eq. 7 which in turn
is based on the history records from § 4.1.

Upon the arrival of X g, we run the restricted Gibbs
sampler on it for T iterations, where each iteration is
followed by allowing splits/merges as in the DPMM
sampler. If B =1, we set T' = 0o, meaning we run it
till convergence (which is very fast since batches are
small (e.g., ng = 10%). If B > 1 then we use T = 1
(i.e., a single iteration). Either way, after those T
iterations, we perform an additional iteration (again
followed by proposing and accepting/rejecting splits
and merges stochastically), but this time replace the
restricted Gibbs sampler with a deterministic routine
(lines 6-11 in Algorithm 2) based on 1) modes (namely,
the argmax of the relevant distributions) instead of
sampling, and, more importantly, 2) the predictive pos-
terior distributions of the labels and subcluster labels.

Concretely, Chang and Fisher III’s restricted sampler
(see § 3) determines the labels as follows: it draws =
and (7)% | from their respective conditional Dirich-
let distributions, and, for each (instantiated) compo-
nent k‘7 draws 9k ~ p(9k|Ck, H), ék,l ~ p(ék,1|6_'k}1; H),
and 0y 2 ~ p(0k2|C.2; H). Next, it uses these drawn
parameters and weights to construct, for each x;, a
likelihood-based pmf and then draws z; from it:

Zi ONC kaw(:lii; Qk, Z; = k) (12)

(where X denotes sampling proportional to the right-
hand side of the equation). In contrast, our determin-
istic subroutine: 1) updates m and (7;)&_, using the
mode of each of their respective conditional Dirichlet
distributions; 2) avoids sampling (Gk,ék’l,ék,g) and,
instead of computing a likelihood-based pmf, computes
a pmf based on the predictive posterior distribution
(Eq. (10)) and uses its argmax to determine z;:

z; = argmax mpp(x|H,SE, NP 2z = k) .
ke{l,...K}

(13)

While the transition from sampling to argmax only

Or Dinari and Oren Freifeld

Algorithm 1: ScStream

Input: H, o, K, e,T

Data: Stream X

X; « X.next

Cl «— X1

K<+ 1

Randomly partition C; into subclusters C,; and
Ci2

g1

6 Extract hi'! = (s}, n), bl = (51, 1,71 1) and
hiy = (51 27”1,2) from (C1, C1, 1701 2)

7 /\/l<—(h11 hlhh)

s while Not Com;erged do

AW N =

%]

1

5

9 K, M +Algorithm 2(X1; H, o, K, K, o0, _, q, B, M)

while Xp < X .next do
(h‘I(B 1) h‘I(B 1) h‘I(B 1))k 1(—M
q<—m1n{b be{l .,B},K(B,b) > €}
M = (hEPT RETT 1 hZf Bl
fort:1.T+1do
K, M +Algorithm 2(Xp; H, a, . . .,
Yield M

10
11
12
13

14
15

taquvM)

16

slightly improves the stability of the results, the use
of the predictive posterior leads to usually-drastic im-
provements in the quality and the inter-batch consis-
tency of the predicted labels (see § 5). The high label
consistency of our method is in sharp contrast to many
streaming-data clustering methods (especially those
with an offline reclustering step) which usually suffer
from significant label switching.

Unsurprisingly, the running time grows linearly with
T. Thus, the choice of T' seemingly suggests a trade-off
between performance and speed. However, we empiri-
cally found (see the appendix) that the improvement
in performance is only sublinear and that, in practice,
a very low value of T' usually suffices. Thus, we suggest
using 7' = 1. That said, if the stream is slow enough,
one may benefit from using a larger 7'

Remark. It is, in fact, possible to use T'= 1 even on
X7 since even in this case, as the stream progresses
the method will eventually reach good performance.
However, this will hurt the results in (only) the first
few batches of the stream.

Summarizing the Main Differences from the
DPMM Sampler. First and foremost, our use of
(a finite-length history of) weighted batched sufficient
statistics is key here. Apart from the fact that it allows
us to handle concept drifts gracefully (unlike the origi-
nal sampler, which assumes that the data statistics are
stationary) it also allows us to visit each batch only
once. The second main difference is our deterministic
subroutine: although it plays a less important role than

6

7

8

9
10

11

12
13

14
15

16
17

18

Algorithm 2: Iteration of the Modified DPMM

Sampler

Input: H, o, K, KT t, q,B,
:B (7q:B
M = (b7, (W5)jen 2))im

Output: K/ M’
Data: Xp
if t <T +1 then

(WP RET RED) « M

Compute (SP)K_ | and (NP)E | using Eq. (7)

1 iteration of the restricted sampler from § 3
using (SP)E_ | and (NP)E | (see appendix
for details)

else
B
w4 KNl ...,KNK N
Z NB+a > NP+a > NP+«
k=1 k=1
for k € {1 ., K} do
~ $+Nia $+Neo
Tk O‘+ZS={1,2} les ’ O‘+Zs={1,2} N;?,s

for z; € Xp do

z; + arg max mpp(2z; = k|x;, H, S, NP)

ke{l,...,K}
Z; + arg maxn,,p(Z; = jlx;, H, S fJ)
Jje{1,2} 7
for ke {l,...,K} do

Extract (sk) (381,75) and (574,71 ,)
(from Cy, Ck1 and Cj o, respectively) and
update (h{'", h{'7 h{:Y) accordingly

for ke {l,...,K} do

Propose splitting C, to its subsclusters and
accept the split with probability min(1, Hepiit)
(Eq. (6))

for k, k' € {1,...,K} do

Propose merging C, and C}s and accept the
merge with probability min(1, Hmerge)

M (hZ:B, (ﬁii?)je{u})ﬁl where K' is the
new number of clusters

the first change (as we show in § 5, even without that
subroutine our method already achieves SOTA results)
it allows our method to have consistent labels across
batches, a feat most methods are incapable of.

5 RESULTS

For evaluation, we have chosen several datasets of vary-
ing difficulty levels and compared with multiple meth-
ods. Some of these datasets are known while the ones
we created /modified are accessible from our code repos-
itory. We chose the component type in our method
according to the data type: Gaussian components for
RP-valued data and multinomial components for dis-
crete count data. As in Dinari et al. (2019), our code
can run on either a single multithreaded process, or be

Sampling in Dirichlet Process Mixture Models for Clustering Streaming Data

Table 2: Running time (in seconds)

BIRCH CluStream D-Stream DBSTREAM StreamKM4+ i Bateh g cam soyp SeStream | DPMM
K-Means (Ours) Sampler
2D Gaussians 1125 313 24.7 17.0 154 14 10207 533 229 580.5
CoverType 958 459 17238 121 25.5 0.8 1610.3 115.6 6.1 254.8
ImageNet 100 579 66.7 N/A 652 242.7 12.0 15.7 1005 23.1 1039.9
ImageNet 1K N/A 1454 N/A 814 N/A 148 195 9219 1005 N/A
100D Multinomials N/A 44.7 N/A 129 25.5 0.8 N/A 1156 235 254.8
20NewsGroup N/A 719 N/A N/A 61.1 0.2 N/A 31 127 122.6

distributed across processes and/or machines. Here, in
our experiments, due to the small batch size we have
chosen the former configuration.

Methods. Due to the abundance of existing algo-
rithms, we focused on several popular methods for
clustering streaming data: BIRCH (Zhang et al., 1996),
CluStream (Aggarwal et al., 2003), D-Stream (Chen
and Tu, 2007), DBSTREAM (Hahsler and Bolafios,
2016), StreamKM++ (Ackermann et al., 2012), Mini-
Batch K-Means (Sculley, 2010) and pcStream (Mirsky
et al., 2015). That choice was based on their prob-
lem settings, popularity, and available software (taken
from Hahsler et al. (2017); Bifet et al. (2011); Pe-
dregosa et al. (2011)). In addition, we have compared
with SoVB (Hoffman et al., 2013), as implemented
by Hughes and Sudderth (2014). We also compare our
method with the DPMM sampler (Chang and Fisher I11I,
2013), using its faster reimplementation (Dinari et al.,
2019). For fairness of comparison, we have tuned each
of the methods on each of the datasets using available
black-box optimizers. The parameters of each method
were tuned on the first 10 batches of each stream,
setting the mean adjusted rand index (ARI) as the
objective function. The R-based methods were tuned
using the irace R package (Lopez-Ibéiiez et al., 2016).
The tuning for pcStream (Mirsky et al., 2015) was
done using the black-bor (Knysh and Korkolis, 2016)
Python package. For the DPMM-related methods we
tuned the hyperparameters using the BlackBoxOptim
Julia package. Note that some of the methods (BIRCH,;
CluStream; Mini-Batch Kmeans; StreamKM) are para-
metric, thus they were always provided with the true
number of clusters, while others (the DPMM sampler;
DBSTREAM; D-Stream; pcStream; ours) infer the
number of clusters; this gives an unfair advantage to
the former over the latter.

Datasets with points in R”. We created a syn-
thetic dataset with 107 points in R? divided into 20
clusters, where the points of each cluster were drawn
from a different Gaussian. Next, we have inserted an
incremental concept drift (Ramirez-Gallego et al., 2017)
to that dataset, meaning that the clusters moved, in-
dependently of each other, as the stream progressed.
In addition, we have used two real datasets: Cover-

Type (Blackard and Dean, 1999) (which is often used
for evaluating streaming-data clustering methods), in
which each observation provides a point in R9 (de-
scribing 30 squared meters of forest). The second
real dataset we used is ImageNet’s (Deng et al., 2009)
train set, where we initially extracted features using
SWAV (Caron et al., 2020), and then used them in
two different settings. In the first one we have used a
subset of 100 classes (out of 1000) and used PCA to
reduce the dimension to 64. In the second setting we
have used the full dataset, and used PCA to reduce the
dimension to 128. In both of the ImageNet settings we
have added a recurring concept drift (Ramirez-Gallego
et al., 2017). In all of the three real dataset settings
we have normalized the data by subtracting the mean
of each feature and dividing by its standard deviation.

Datasets with count data. We have created a syn-
thetic dataset of 107 100-dimensional points divided
into 100 clusters, where the points in each cluster were
drawn from a multinomial distribution. Next, we have
inserted gradual concept drift (Ramirez-Gallego et al.,
2017) to that dataset. For a real dataset we have used
the 20newsgroup (Lang, 1995), where each sample is
a news article in one out of twenty possible subjects.
We have used only the 1000 most commons words for
classification in each sample.

Note that not all the methods were evaluated on all
of the datasets. The reason is that some methods do
not support count data and/or do not scale (e.g. did
not finish in comparable time or ran out of memory)
to high dimensions.

Evaluation. In all the experiments we used a fixed
batch size of 1000 points. In order to evaluate the
performance of each model we have used several pop-
ular metrics. Before processing each batch we have
used the current model to predict the labels of the
batch, and only then updated the model according to
the new data. The only exception for this was the
(unmodified) DPMM sampler, where we have clustered
each batch separately and used the results as the la-
bels. The metrics we used on the predicted labels were
ARI, Normalized Mutual Information (NMI), Purity
and Pairwise F-Measure, where in all cases we report

Or Dinari and Oren Freifeld

Original

ScStream

Figure 1: Select frames from a video-segmentation task. Results shown for ScStream (which inferred 80 clusters).
For comparison, see also additional results of a competing method (MiniBacth K- Means) in the appendix.

the mean result across all of the batches. In addition,
for the methods that support it, we have checked the
consistency of the labels between batches, comparing
the predictions for the entire dataset and the true la-
bels. For this we used Full NMI; i.e., concatenating
all the predictions (across the batches) and compar-
ing the result, via NMI, to the true labels. Table 1
summarizes the results. Our method almost uniformly
outperforms the other streaming-data clustering meth-
ods. The exceptional metrics are Purity and Full NMI
in the high-K cases, as there the unfair advantage we
gave the parametric methods is especially significant.
See the appendix for the box plots of the different
metrics, revealing additional information (beyond the
mean+std. dev.). Table 2 shows that our running
time is on-par with most methods, except Mini-Batch
K-means which is the fastest.

The deterministic subroutine. We have repeated
the ImageNet100 experiment, but this time without
using that subroutine (and instead used an additional
iteration of the unmodified restricted Gibbs sampler).
The results, in Table 3, show clear benefits from using
the proposed subroutine.

Video Temporal Segmentation. Image (non-
semantic) segmentation is a popular computer-vision
task, where an image is partitioned into several differ-
ent segments. Here we consider a simple case where
the segmentation is based on each pixel’s color and
location. However, to demonstrate the utility of our
streaming-data method, we apply it to video segmen-
tation (as opposed to a single-image segmentation).
In this experiment, each batch is a video frame. The
resolution of each RGB frame in the ‘kite-surf’ video
(taken from the DAVIS dataset (Perazzi et al., 2016))

Another sampling iter. Proposed subroutine

ARI 0.57 £ .18 .63 +£.19
NMI 0.65 £ .20 .69 £ .15
Full NMI 0.43 + .02 48 +£.01

Table 3: Using the deterministic subroutine as
opposed to another sampling iteration. Data:
ImageNet100 experiment.

was 480 x 854. This implies that each batch was of size
N = 409920 and D =5 (3 colors channels plus the 2D
location of each pixel). The video contains 50 frames,
so in total we had 20.4M 5D samples. Each frame took
ScStream 0.6 [sec] to process (including I/0). In this
quantitative experiment, the pros of using our method
stand out. For example. unlike many other methods
(such as DBSTREAM, Birch, etc.), we do not have
label switching, thus it is possible to have temporally-
consistent clusters. In contrast, methods that suffer
from label switching cannot guarantee inter-frame con-
sistency. Figure 1 shows example results of our method.
Results of another method that does not suffer from
label switching, MiniBatch K-means (Sculley, 2010),
appear in the appendix. However, even if we ignore
that fact that MiniBatch K-means is parametric (so it
must be given the value of K), it cannot handle concept
drifts; e.g., as the figure in the appendix shows, each
cluster remains in a similar spatial location between
frames, and the surfer is barely distinguishable from
the background. However, ScStream solves these prob-
lems as is evident by the fact that the surfer is clearly
distinguishable from the background, and his label is
consistent across the frames, despite the fact that his
associated clusters change their statistics over time.

6 CONCLUSION

We have proposed a new BNP method, called ScStream,
for clustering streaming data. ScStream, a streaming-
data extension of a recent fast implementation of a
(non-streaming) DPMM sampler, is fast and achieves
SOTA results. While ScStream supports any expo-
nential family for the component type, it cannot han-
dle arbitrary-shaped clusters; this is arguably its key
limitation. For simplicity, our presentation here as-
sumed that the batches arrive at times {1,2,3,...};
however, our method is general enough to support ar-
rivals at any monotonically-increasing time sequence
(i.e., t1 < ta < ...) and our code already supports
this generality. The only difference in such a case is
that K(tp,tp) is used instead of (B, b). Our publicly-
available code is easy to use and offers the user an
interface in either Julia or Python.

Sampling in Dirichlet Process Mixture Models for Clustering Streaming Data

References

M. R. Ackermann, M. Martens, C. Raupach, K. Swierkot,
C. Lammersen, and C. Sohler. Streamkm++ a clustering
algorithm for data streams. Journal of Experimental
Algorithmics, 2012. 2, 1, 5

C. C. Aggarwal, S. Y. Philip, J. Han, and J. Wang. A frame-
work for clustering evolving data streams. In Proceedings
2003 the Very Large Data Bases conference. Elsevier,
2003. 2,1, 5

A. Amini and T. Y. Wah. Leaden-stream: A leader density-
based clustering algorithm over evolving data stream.
Journal of Computer and communications, 2013. 2

A. Amini, H. Saboohi, T. Y. Wah, and T. Herawan. A fast
density-based clustering algorithm for real-time internet
of things stream. The Scientific World Journal, 2014. 2

C. E. Antoniak. Mixtures of Dirichlet processes with appli-
cations to Bayesian nonparametric problems. The annals
of statistics, 1974. 1

V. Bhatnagar and S. Kaur. Ezclusive and Complete Clus-
tering of Streams. Springer Berlin Heidelberg, 2007. 2

A. Bifet, G. Holmes, B. Pfahringer, J. Read, P. Kranen,
H. Kremer, T. Jansen, and T. Seidl. Moa: a real-time
analytics open source framework. In Joint Furopean Con-
ference on Machine Learning and Knowledge Discovery
in Databases. Springer, 2011. 5

J. A. Blackard and D. J. Dean. Comparative accuracies
of artificial neural networks and discriminant analysis in
predicting forest cover types from cartographic variables.
Computers and electronics in agriculture, 1999. 5

P. Bradley, U. Fayyad, and C. Reina. Scaling clustering
algorithms to large databases. In KDD. AAAI Press,
1998. 2

T. Campbell, M. Liu, B. Kulis, J. P. How, and L. Carin.
Dynamic clustering via asymptotics of the dependent
Dirichlet process mixture. In NeurIPS, 2013. 2

T. Campbell, J. Straub, J. F. III, and J. How. Streaming,
distributed variational inference for Bayesian nonpara-
metrics. In NeurIPS, 2015. 2

T. Campbell, B. Kulis, and J. How. Dynamic clustering
algorithms via small-variance analysis of Markov chain
mixture models. IEEE TPAMI, 2019. 2

F. Cao, M. Ester, W. Qian, and A. Zhou. Density-based
clustering over an evolving data stream with noise. In
SIAM international conference on data mining, 2006. 2

M. Carnein and H. Trautmann. evostream — evolutionary
stream clustering utilizing idle times. Big Data Research,
2018. 2

M. Carnein and H. Trautmann. Optimizing data stream
representation: An extensive survey on stream clustering
algorithms. Business and Information Systems Engineer-
ing (BISE), 2019. 2

M. Caron, I. Misra, J. Mairal, P. Goyal, P. Bojanowski, and
A. Joulin. Unsupervised learning of visual features by
contrasting cluster assignments. NeurIPS, 2020. 5

J. Chang. Sampling in computer vision and Bayesian non-
parametric miztures. PhD thesis, Massachusetts Institute
of Technology, 2014. 2, E

J. Chang and J. W. Fisher III. Parallel sampling of DP
mixture models using sub-cluster splits. In NeurIPS,
2013. 1, 2, 3, 3, 5, 3, 10

Y. Chen and L. Tu. Density-based clustering for real-time
stream data. In ACM SIGKDD international conference
on Knowledge discovery and data mining, 2007. 2, 1, 5

J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei.
ImageNet: A large-scale hierarchical image database. In
CVPR, 2009. 5

O. Dinari, A. Yu, O. Freifeld, and J. Fisher III. Distributed
MCMC inference in Dirichlet process mixture models
using Julia. In IEEE CCGRID Workshop on High Per-
formance Machine Learning, 2019. 1,2, 1, 5

C. Fahy, S. Yang, and M. Gongora. Ant colony stream clus-
tering: A fast density clustering algorithm for dynamic
data streams. IEEFE Transactions on Cybernetics, 2018.
2

T. S. Ferguson. A Bayesian analysis of some nonparametric
problems. The Annals of Statistics, 1973. 1

H. Fichtenberger, M. Gillé, M. Schmidt, C. Schwiegelshohn,
and C. Sohler. Bico: Birch meets coresets for k-
means clustering. In European symposium on Algorithms.
Springer, 2013. 2

A. Gelman, H. S. Stern, J. B. Carlin, D. B. Dunson, A. Ve-
htari, and D. B. Rubin. Bayesian data analysis. Chapman
and Hall/CRC, 2013. 3,1, 1, F, F

M. Ghesmoune, H. Azzag, and M. Lebbah. G-stream: Grow-
ing neural gas over data stream. In C. K. Loo, K. S. Yap,
K. W. Wong, A. Teoh, and K. Huang, editors, Inter-
national Conference on Neural Information Processing.
Springer International Publishing, 2014. 2

M. Hahsler and M. Bolanos. Clustering data streams based
on shared density between micro-clusters. IEEE Trans-
actions on Knowledge and Data Engineering, 2016. 1,
5

M. Hahsler, M. Bolanos, and J. Forrest. Introduction to
stream: An extensible framework for data stream clus-
tering research with R. Journal of Statistical Software,
2017. 2, 5

W. K. Hastings. Monte Carlo sampling methods using
Markov chains and their applications. 1970. 3

N. L. Hjort, C. Holmes, P. Miiller, and S. G. Walker.
Bayesian nonparametrics. Cambridge University Press,
2010. 1

M. D. Hoffman, D. M. Blei, C. Wang, and J. Paisley.
Stochastic variational inference. Journal of Machine
Learning Research, 2013. 1, 2, 1, 5

L. Hu, J. Li, X. Li, C. Shao, and X. Wang. Tsdpmm:
Incorporating prior topic knowledge into dirichlet process
mixture models for text clustering. In Conference on
Empirical Methods in Natural Language Processing, 2015.
4.2

M. C. Hughes and E. B. Sudderth. Memoized online varia-
tional inference for Dirichlet process mixture models. In
NeurIPS, 2013. 1, 2, 4.1

M. C. Hughes and E. B. Sudderth. Bnpy: Reliable and
scalable variational inference for bayesian nonparametric
models. In NeurIPS Workshop on Probabilistic Program-
ming, 2014. 5

C. Isaksson, M. H. Dunham, and M. Hahsler. SOStream:
Self Organizing Density-Based Clustering over Data
Stream. Springer Berlin Heidelberg, 2012. 2

Or Dinari and Oren Freifeld

P. Knysh and Y. Korkolis. Blackbox: A procedure for
parallel optimization of expensive black-box functions.
arXiv:1605.00998, 2016. 5

K. Lang. Newsweeder: Learning to filter netnews. In ICML,
1995. 5

D. Lin. Online learning of nonparametric mixture models
via sequential variational approximation. NeurlPS, 2013.
2

J. Lin and H. Lin. A density-based clustering over evolving
heterogeneous data stream. In ISECS International Col-
loquium on Computing, Communication, Control, and
Management, 2009. 2

S. Lloyd. Least squares quantization in pcm. IEEE Trans-
actions on Information Theory, 1982. 2

M. Lépez-Ibanez, J. Dubois-Lacoste, L. P. Caceres, M. Bi-
rattari, and T. Stiitzle. The irace package: Iterated
racing for automatic algorithm configuration. Operations
Research Perspectives, 2016. 5

B. Lorbeer, A. Kosareva, B. Deva, D. Softi¢, P. Ruppel,
and A. Kipper. A-BIRCH: Automatic Threshold Esti-
mation for the BIRCH Clustering Algorithm. Springer
International Publishing, 2017. 2

S. N. MacEachern. Dependent nonparametric processes. In
ASA proceedings of the section on Bayesian statistical
science, 1999. 2

J. MacQueen et al. Some methods for classification and
analysis of multivariate observations. In Proceedings of
the fifth Berkeley symposium on mathematical statistics
and probability, 1967. 2

Y. Mirsky, B. Shapira, L. Rokach, and Y. Elovici. pcstream:
A stream clustering algorithm for dynamically detect-
ing and managing temporal contexts. In Pacific-Asia
Conference on Knowledge Discovery and Data Mining.
Springer, 2015. 2, 1, 5

P. Miiller, F. A. Quintana, A. Jara, and T. Hanson.
Bayesian nonparametric data analysis. Springer, 2015. 1

L. O’Callaghan, N. Mishra, A. Meyerson, S. Guha, and
R. Motwani. Streaming-data algorithms for high-quality
clustering. In The International Conference on Data
Engineering, 2002. 2

N. H. Park and W. S. Lee. Statistical grid-based clustering
over data streams. SIGMOD Rec., 2004. 2

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cour-
napeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-
learn: Machine learning in Python. Journal of Machine
Learning Research, 2011. 5

F. Perazzi, J. Pont-Tuset, B. McWilliams, L. Van Gool,
M. Gross, and A. Sorkine-Hornung. A benchmark dataset
and evaluation methodology for video object segmenta-
tion. In CVPR, 2016. 5

J. Pitman. Combinatorial stochastic processes. Techni-
cal report, Technical Report 621, Dept. Statistics, UC
Berkeley. Lecture notes, 2002. 3

D. Puschmann, P. Barnaghi, and R. Tafazolli. Adaptive
clustering for dynamic iot data streams. IEEE Internet
of Things Journal, 2016. 2

S. Ramirez-Gallego, B. Krawczyk, S. Garcia, M. Wozniak,
and F. Herrera. A survey on data preprocessing for data
stream mining: Current status and future directions.
Neurocomputing, 2017. 1, 5

J. Ren and R. Ma. Density-based data streams clustering
over sliding windows. In International Conference on
Fuzzy Systems and Knowledge Discovery, 2009. 2

C. Robert and G. Casella. Monte Carlo statistical methods.
Springer Science & Business Media, 2013. 3

C. Ruiz, E. Menasalvas, and M. Spiliopoulou. C-DenStream:
Using Domain Knowledge on a Data Stream. Springer
Berlin Heidelberg, 2009. 2

D. Sculley. Web-scale k-means clustering. In WWW, 2010.
2,1,55

E. B. Sudderth. Graphical models for visual object recogni-
tion and tracking. PhD thesis, Massachusetts Institute
of Technology, 2006. 3

C. Yang and J. Zhou. HClustream: A novel approach for
clustering evolving heterogeneous data stream. In ICDM
Workshops, 2006. 2

Y. Yang, B. Chen, and H. Liu. Memorized variational
continual learning for Dirichlet process mixtures. I[EEE
Access, 2019. 2

J. Zgraja and M. Wozniak. Drifted data stream clustering
based on clustree algorithm. In International Conference
on Hybrid Artificial Intelligence Systems. Springer, 2018.
2

T. Zhang, R. Ramakrishnan, and M. Livny. Birch: an
efficient data clustering method for very large databases.
ACM sigmod record, 1996. 2, 1, 5

A. Zubaroglu and V. Atalay. Data stream clustering: a
review. Artificial Intelligence Review, 2021. 1

Supplementary Material:
Sampling in Dirichlet Process Mixture Models
for Clustering Streaming Data

Abstract

This documents contains the following:

® N o o

. an additional figure for the video segmentation experiment;

additional Boxplots for our main experiment, omitted from the paper due to space limits.
an empirical verification that our runtime grows linearly with T' (i.e., the number of iterations of the
restricted Gibbs sampler) and that a very low T suffices for good results;

the details of a single iteration in the original restricted Gibbs sampler (Chang and Fisher III, 2013);
the expressions for the marginal likelihood for Gaussian and multinomials components;

the posterior calculations in the multinomial case(the Gaussian case was already included in our paper);
the predictive posterior in the multinomal case (the Gaussian case was already included in our paper);
the full details of our experiments hyper-params and machine specification.

Proceedings of the 25'" International Conference on Artifi-
cial Intelligence and Statistics (AISTATS) 2022, Valencia,
Spain. PMLR: Volume 151. Copyright 2022 by the au-
thor(s).

Or Dinari and Oren Freifeld

A Additional Video Segmentation Results

<
|
o0
—
@)

30)

500) MBK(K=80) MBK (K=

ScStream MBK(K

Figure 2: Video segmentation (example frames). Results shown for MiniBatch-Kmeans (denoted as MBK) with
several different K values, as well as for ScStream (which inferred 80 clusters).

B Boxplots

Here we provide boxplots for the ARI, NMI, Purity and F-measure metrics (for the same experiments as in the paper).
Recall that for some of these metrics, the parametric methods (namely, methods that need to know K) enjoy an unfair
advantage as they were given the true value of K. The parametric methods are: BIRCH; CluStream; StreamKM++;
MB-Kmeans.

1.00 0. .
0.60 ¢
0.80 050 0.80
4
0.60 040 0.60

0.30

0.40 0.20 0.40
- ¢ 0.10 020
1 0.00
0.00 4

0.00 *

o) o < N\ x 0 < oy < & 0 < o 0 IRNNN) 2
< & & ™ W o o1 N & & & o x g;& & & o \>. S RS
AT T o8 o e © e T o8 o ¢ m‘k\m o o S @“N & ET T &
(a) Gaussian 2D (b) CoverType (¢) ImageNet100

=
0.80 0.80

012
3

0.60 0.60 0.10

0.08
040 0.40 0.06 g
0.20 0.20 004

0.02

== mEEm

0.00 000 —

& o ﬁ«\ o R w\@“s o®
\W o & N

(d) ImageNeth (e) Multinomial (f) 20NewsGroups

N
@ o 1 o @@“ <@
ofT B S e & o & % S S5

Figure 3: Box plots of the ARI metric for each of the experiments.

Sampling in Dirichlet Process Mixture Models for Clustering Streaming Data

1.00

i ! +
L]
*
o IR NN PRI SN ©
56 P R T A &
O o o8 0%4 s‘»‘“"“‘* \Ké’\k & "%““‘\

(a) Gaussian 2D

N $ '
i
‘
& H $ '
_L o
RN N\ N
@ e'b e 2"

o5 4? »Ww & <0 f,é:\g““@

(d) ImageNet1K

Figure 4: Box plots

Pt

*
¢

o

S S e S RN 3 o
&€ @ @ W B @ &
e o o 0\65‘*6 N < ‘J%o‘s\

) Gaussian 2D

+

.

.
© \J © © © N
& S 2 & N 2
o o T < 5&\3}\

(d) ImageNet1K

110
1.00
0.90
0.80
070
0.60
0.50
0.40

0.20

o«

%
&

c\;svz’«

of the NMI metric for each of the

‘

o«

5
&
of

ENERN
o o5 ‘g,ﬂ‘*@\\\
o

+

o W

(b) CoverType

o ©
W *m’-"\v 5,\‘?7‘“\ ot

©
K
s&@i‘@\

1]

—_—

N x o
%4‘2\?} W o "
o W

W
5

(e) Multinomial

@
PR

(b) CoverType

i,

N x S

2 x o

& o &
B NS

o® W

5

(e) Multinomial

«o®

S e W PR SN, 3
& & N X 2
o o5 O%g/\‘{‘ W A

©
S"\l

N
5‘5\3\@

©
@
s%&"\

2’5«\
5(5\3@

045

0.40
0.35
0.30
0.25
- =
0.15 +
—_
0.00
RN o - N
o sue““\k »Wm@ S
(f) 20NewsGroups
experiments.
1.00
PEE L
0.60 . ‘
0.40 .
*
0.20 ’

T

}

o 2 S XX © o
o & & AW & g
B g

(c¢) ImageNet100

o 0 N XX © i
o o5 0%4?& 3‘0@5 © o« Q&‘\%

-_— 0 = ==

o x .
o e « !
\=8

(c¢) ImageNet100

+

5@

(f) 20NewsGroups

Figure 5: Box plots of the Purity metric for each of the experiments.

o o o N SIS N N
of T P e g 9 &
o o ¢ o @e‘* © & ‘f“(z)\xs\

(a) Gaussian 2D

Y I

N4 N\ N
s‘xz qg} o “e" <o &
o S %4 \t\%v\ 5 5(5\8 ©

(d) ImageNet1K

1.00

o«

5
o
of

9‘”‘

il

<
o5 %q*@“\ w7 m“’° oo
o

@
g W

(b) CoverType

L

©
W
o it
o° W

5

(e) Multinomial

S"

s\‘*,‘,\

2
s%i@

i
$
L
¢ D ‘.
X 2 N x A&
o O“sﬂzwo%é%w@‘“@h o :
(c¢) ImageNet100

--ii

o&“w e
=8

5

(f) 20NewsGroups

Figure 6: Box plots of the Pairwise F-measure metric for each of the experiments.

o-»o]—.—{“
-

%

O
o5 (e\
o

'
¢
¢
:

N N
< 5‘5\‘0‘?@

N\ 4 2
T

Or Dinari and Oren Freifeld

C

An Empirical Verification that the Runtime Grows Linearly with T (i.e., the
Number of Iterations of the Restricted Gibbs Sampler) and that a Very Low T
Suffices for Good Results

Recall that T is the number of iterations for which we run the restricted Gibbs sampler on each batch. Note that 7" should

not

be confused with the arrival time of the batch (we used b, not T, to denote the the batch index). To empirically

validate that runtime grows linearly with T, we ran our method on a synthetic Gaussian dataset with 10° observations
sampled from 20 overlapping components where, in addition, we have inserted both incremental and gradual concept
drifts to the data. The results, in terms of running time and performance as functions of 7', appear in Figure 7. It is

seconds

17.5

15.0

-

o

o
T

75 r

5.0 |

Mean ARI
25 Mean NMI
r L L L L s 0.65 &1 L L L L L
0 10 20 30 40 50 0 10 20 30 40 50

T T

(a) Running time as a function of 7T'. (b) Performance as a function of T'.

Figure 7: Running time and performance as functions to T’

observable that while the performance gain initially increases with 7', a plateau is quickly reached. Thus, further increasing
T will result in smaller and smaller gains. The runtime, however, is linear with 7', thus using a low T is usually preferred.
Particularly, note that T' = 1 already achieves good results. Therefore, all the experiments in the paper were done with
T=1.

w N

© 0 N O oA

10

Sampling in Dirichlet Process Mixture Models for Clustering Streaming Data

D Iteration of the Restricted Gibbs Sampler

Algorithm 3: Iteration of the Original Restricted Gibbs Sampler (Chang and Fisher III, 2013)

Input: H, o, K,N, (5k75k,1,5k,27NkaNk,laNW)g:l
Output: (z;,%)N,

Data: X
Draw weights by 7 ~ Dir(Ny, ..., Ng, «) // a K+ 1 dimensional Dirichlet Distribution
for ke {l,...,K} do
Draw subcluster weights by 7 ~ Dir(Ny 1 + 3 Nia + %) // a 2-dimensional Dirichlet
Distribution

for ke {l,...,K} do

Draw cluster 0y parameters by 0y ~ fo(0x; Sk, Nk, H)

Draw subcluster 0y 1 parameters by 0 1 ~ fo(0k.1; Sk1, Ni.1, H)

Draw subcluster 0y » parameters by 0 o ~ fo(0k.2; Sk.2, N2, H)
forie{l,...,N} do

Draw cluster label for x; with p(z; = k|z;, 7, Ok) X Tk fz (i 0k, 2; = k)

Draw subcluster label for @; with p(2z; = j|z;, Tk j, Ok ;) < 7k j fo(Ti; O j, 20 = 7)

Algorithm 3 (using a notation that is consistent with the one in our paper) is a single iteration of the restricted Gibbs
sampler from Chang and Fisher III (2013).

E Marginal Likelihoods

For full derivation of the well-known results below, see Chang (2014).

E.1 Gaussian

Let X be the points in the cluster, let N = |X| be the number of points, and let D be the dimension of each point. Let
(k,m,v, ¥) denote the NIW prior hyperparameters, and let (k*,m*,v*, ®*) denote the posterior hyperparameters, as
calculated in Example 1 in the main paper. The marginal likelihood of X under the above parameters is:

Lo ()lvy|2 K\F
p(X) = ND * Tk (14)
TFTFD(%)‘Z/*’L/)ﬂT (K)

where I'p(+) is the multivariate Gamma function of dimension D and | - | is the determinant.

E.2 Multinomial

Let X be the points in the cluster, and let N = |X| be the number of points. Each point in
is a D-length histogram, where x;; entry in it corresponds to how many times outcome j was observed in the i-ith

experiment. Let Dir(dy,...,dp) be the Dirichlet-distribution prior and let A = Z]DZI dj. The marginal likelihood of X is:

D

N'F(A) H dj + xij

p(X) = M7, (@i, h)D(A+ N) ;= T(dy)

(16)

F Multinomial Posterior Calculation

Let X = (@1,...,@n,) denote the data points (in ZZ,) in batch b. Using a classical result (Gelman et al., 2013), the

sufficient statistics here are
b
s = (E :Ziexb winzi:k) . (17)

Or Dinari and Oren Freifeld

Let (d1,...,dp) be the hyperparameters for the Dirichlet distribution prior and its hyperparameters. By conjugacy (Gelman
et al., 2013), and when using our time-weighted sufficient statistics, the hyperparameters of the posterior are:

iy d5) = (du,...,dp) + Zf:q {K(B,b) S mnzi:k} . (18)

G Predictive Posterior of the Multinomial Distribution

Following the notation in § E.2, and letting Dir(dy, ..., dp) denote the Dirichlet-distribution posterior and A* = Z]D 1 d;

denote the sum of the posterior hyperparameters, the predictive posterior for the multionmial distribution is the following
DirMult distribution:

D ' D .
DirMult(z;; di, . .., dp) = (Zgl o) H”” (19)
Hj:l zi;! D(A* + ZJ 1 Ti5) j=1
where ; is a single sample @; = (i, ..., %,). Conveniently, when conditioning on k (and adding the component weight)
we can drop multiplicative constants from the RHS of the equation above, simplifying the expression:
D
* I'(d; ij
Pl B, SPND) o mplaldi, = (8. d). 2 = b) = my) Gz ()

(A*+Z —1%ij) o I'(d5)

H Experiments Details

Machine Spec: All the experiments were done on an Ubuntu 20.4 machine with an Intel® Core™ i9-11900K Processor.
For Julia we used version 1.6, for Python version 3.8 and for R version 4.1.1.

H.1 Experiment Parameters

All the hyperparameters, for each of the competing methods and each of the datasets, were tuned by black-box optimizers;
see the paper for details. All the parametric models were given the true value of K. Here we provide the values of
optimized parameters (found by the black-box optimizers) which were used in each of the experiments.

Gausian 2D:

DBSTREAM: A = 0.01,r = 0.5768, C'm = 0.39244, o = 0.2709, gaptime = 2971.

D-Stream: A = 0.01, gmdszze 0.9561, gaptime = 4931, Cm = 2.92,Cl = 2.6721.

CluStream: A = 0.01,¢t = 4.

BIRCH: A = 0.01, threshold = 1.9339, branching = 2, maxLeaf = 26.

StreamKM: A = 0.01, sizeCoreset = 1000.

PcStream: driftThreshold = 0.74308542, percentV arience = 4.66021295, max Dri ftSize = 250.13468314 - 2.
SoVB:k = 1,m = zeros(2),v =4,¥ =1-1.02,rhoexp = 0.55,« = 1.0, rhodelay = 1.

ScStream: A =1,k = 1,m = zeros(2),v =4, =1-1.02,a = 1.0,¢ = 1le — 08.

CoverType:

DBSTREAM: A = 0.01,r = 0.7715, Cm = 2.748, alpha = 0.173, gaptime = 597.

D-Stream: A = 0.01, gridsize = 0.6142, gaptime = 4490, Cm = 2.143,Cl = 1.533.

CluStream: A\ = 0.01,¢ = 3.

BIRCH: A = 0.01, treshold = 1.4011, branching = 1, maxLeaf = 32.

StreamKM: A = 0.01, sizeCoreset = 1000.

PcStream: driftThreshold = 0.80786776, percentV arience = 3.5408475, maxDriftSize = 15.0128437 - 10.
SoVB:k = 1,m = zeros(10),v = 25, =1-0.78, rhoexp = 0.55, a = 1.0, rhodelay = 1.

ScStream: A = 0.2,k = 1,m = zeros(10),vr =25, ¥ =1-0.78,a« = 1.0,€ = le — 08.

ImageNet100:

DBSTREAM: A\ = 0.01,r = 2.5092, C'm = 1.2568, alpha = 0.118, gaptime = 3528.

D-Stream: A = 0.01, gridsize = 0.6216, gaptime = 2924, Cm = 2.7936, Cl = 1.8295.

CluStream: A = 0.01,¢ = 3.

BIRCH: X = 0.01, treshold = 1.9445, branching = 3, maxLeaf = 5.

StreamKM: A\ = 0.01, sizeCoreset = 1000.

PcStream: driftThreshold = 1.23666252, percentV arience = 1.50457986, max Dri ftSize = 9.50255966 - 64.
SoVB:k = 1,m = zeros(64),v = 562, ¥ =1-0.51, rhoexp = 0.55, « = 1.0, rhodelay = 1.

Sampling in Dirichlet Process Mixture Models for Clustering Streaming Data

ScStream: A = 0.2,k = 1,m = zeros(64),v = 562, ¥ =1-0.51,a = 1.0,e = le — 08.

ImageNet1000:

DBSTREAM: A\ = 0.01,r = 1.8247,Cm = 1.675, alpha = 0.1798, gaptime = 454.

CluStream: \ = 0.01,¢ = 5.

PcStream: driftThreshold = 1.39396418, percentV arience = 1.91681159, max DriftSize = 4.78852301 - 128.
SoVB:k = 1,m = zeros(128),v =834, ¥ =1-0.177, rhoexp = 0.55,« = 1.0, rhodelay = 1.

ScStream: A = 0.2,k = 1,m = zeros(128),r =834, ¥ =1-0.177,a = 1.0,e = 1le — 08.

	INTRODUCTION
	RELATED WORK
	BACKGROUND
	METHOD
	Batches and Time-based Weighting
	The Proposed Algorithm

	RESULTS
	CONCLUSION
	Additional Video Segmentation Results
	Boxplots
	An Empirical Verification that the Runtime Grows Linearly with T (i.e@let@token ., the Number of Iterations of the Restricted Gibbs Sampler) and that a Very Low T Suffices for Good Results
	Iteration of the Restricted Gibbs Sampler
	Marginal Likelihoods
	Gaussian
	Multinomial

	Multinomial Posterior Calculation
	Predictive Posterior of the Multinomial Distribution
	Experiments Details
	Experiment Parameters

